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al S
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ien
e, University of California, Davis, California 95616(Dated: June 16, 2004)Ele
tron-impa
t ex
itation and ionization of helium is studied in the S-wave model. The problemis treated in full dimensionality using a time-dependent formulation of the exterior 
omplex s
alingmethod that does not involve the solution of large linear systems of equations. We dis
uss thesteps that must be taken to 
ompute stable ionization amplitudes. We present total ex
itation,total ionization and single di�erential 
ross se
tions from the ground and n = 2 ex
ited states and
ompare our results with those obtained by others using a frozen-
ore model.I. INTRODUCTIONSin
e the early years of quantum me
hani
s and thedevelopment of s
attering theory, an a

urate des
rip-tion of the 
orrelated motion of three unbound parti
lesintera
ting via Coulomb for
es has been a diÆ
ult prob-lem to treat theoreti
ally. Indeed, this problem was onlyredu
ed to 
omputation in the last de
ade [1℄. The dif-�
ulty stems from the long-range nature of the Coulombpotential whi
h introdu
es a number of formal and pra
-ti
al 
ompli
ations. Although the formal theory of e-Hionization was developed in the 1960's by Peterkop [2℄and by Rudge and Seaton [3, 4℄, it has not provided apra
ti
al path to 
omputation. The asymptoti
 form ofthe wave fun
tion they derived is valid only in spe
i�
and limited geometries of the intera
ting parti
les andhas proved to be too 
ompli
ated to use as a boundary
ondition for solving the time-independent S
hr�odingerequation. Consequently, mu
h of the work on ele
tron-impa
t ionization has been 
arried out using perturba-tive, distorted-wave type methods or with 
lose-
ouplingapproa
hes that apply approximate two-body boundary
onditions.A pra
ti
al path to a

urate 
omputation at low 
olli-sion energies was only fully realized in the past few years.The key to over
oming the diÆ
ulties posed by the formaltheory has been to formulate methods that do not relyon expli
itly enfor
ing the boundary 
onditions for three-body Coulomb breakup. Several theoreti
al methods 
anbe mentioned in this 
ontext. One su
h approa
h is the\time-dependent 
lose-
oupling" method developed byPindzola, S
hultz, Robi
heaux and 
oworkers [5, 6℄. Inthat approa
h, a wave pa
ket is �red at the target atomand the time-dependent S
hr�odinger equation des
ribingits dynami
s is solved in a 
lose-
oupling formulation.Asymptoti
 boundary 
onditions are avoided sin
e thetime-dependent S
hr�odinger equation is solved as an ini-�dahorner�lbl.govy
wm

urdy�lbl.govztnres
igno�lbl.gov

tial value problem. Another su

essful method, whi
hhas been applied to the atomi
 double photoionizationproblem, is the hyperspheri
al R-matrix method withsemi-
lassi
al outgoing waves [7℄. In that approa
h, thetime-independent S
hr�odinger equation is solved withoutdetailed spe
i�
ation of three-body Coulomb boundary
onditions by merging two di�erent approa
hes: an R-matrix treatment of the entire system in the vi
inity ofthe nu
leus along with a semi
lassi
al des
ription of theevolution of the system in the asymptoti
 region. Ex-terior 
omplex s
aling (ECS) [8℄ avoids the expli
it en-for
ement of boundary 
onditions entirely and has beensu

essful in solving all aspe
ts of the prototypi
al three-body Coulomb problem, ele
tron-impa
t ionization ofatomi
 hydrogen, to arbitrary a

ura
y [9, 10℄.Most of the 
urrently su

essful methods have beenapplied to study ele
tron-impa
t ionization of multi-ele
tron atoms by treating all but one a
tive target ele
-tron in a frozen-
ore approximation, whi
h redu
es theproblem to an e�e
tive three-body Coulomb system. Thequestion we want to address here is whether the ECSmethod o�ers a pra
ti
al approa
h to studying ioniza-tion of atoms with two a
tive ele
trons. The method,as originally applied, involves solving large, sparse sys-tems of linear equations. Extending this implementation,dire
tly, to three ele
trons leads to linear systems thatare extremely large and prohibitively expensive to solve.We have addressed that issue previously [11℄ by showinghow the ECS method 
ould be 
ast in a time-dependentformulation that s
ales more favorably with the numberof ele
trons than the original time-independent formula-tion. The time-dependent ECS (TD-ECS) method wassu

essfully applied to a problem involving four parti
lesintera
ting via short range potentials.Here we take the �rst steps toward applying ECS to thefull ele
tron-helium system. In this paper we extend thetime-dependent ECS method to a system of four 
hargedparti
les and 
onsider the S-wave model of e�-He ion-ization. The S-wave model provides a distillation of thefull, 9-dimensional, problem into a system involving justthree radial 
oordinates. While the problem we 
onsiderhere is a model, it has the 
omplexity of a true four-body Coulomb problem - involving long-range for
es and



2an in�nite number of two-body ex
itation 
hannels - butsimpli�es the full problem by treating only states withzero angular momentum.While the S-wave (or Temkin-Poet) model for e�-Hionization has been a testbed for developing numeri
alapproa
hes for studying ionization, the 
orrespondingmodel for ele
tron-helium s
attering and ionization hasre
eived little attention in the literature, with most of thee�ort going towards solving the full ele
tron-helium sys-tem under a number of approximations. Pindzola et al.[12℄ have used the time-dependent wave pa
ket methodto 
ompute total 
ross se
tions with the S-wave model inthe 
ontext of double ionization at high energies. Thishas been the only previous 
al
ulation to treat all of theele
trons on the same footing, thus solving a true three-ele
tron ionization problem. Plottke et al., using the
onvergent 
lose-
oupling (CCC) method [13℄, have alsoreported results for this problem by freezing one of theele
trons in the target. Under that approximation, themodel is e�e
tively equivalent to a two-ele
tron system.The method of exterior 
omplex s
aling is implementedhere in 3D with a 
ombined �nite element-dis
rete vari-able representation (FEM-DVR)[14℄. The FEM-DVRbasis provides a numeri
al grid on whi
h to perform the
al
ulation, as well as an underlying expansion basis thatallows the 
omputed wave fun
tions to be evaluated asa 
ontinuous fun
tion of the 
oordinates. ECS providesa method for 
omputing a numeri
al representation ofthe physi
al s
attering wave fun
tion on a �nite volumeby imposing only simple, outgoing-wave boundary 
on-ditions. Be
ause of the simpli�ed boundary 
onditionsemployed, the 
al
ulations do not automati
ally providethe desired s
attering information. For the three-bodyproblem, we have previously shown how to formulate asurfa
e integral expression for the ionization amplitudethat provides numeri
ally stable and a

urate 
ross se
-tions on a �nite volume [10, 15, 16℄. With multi-ele
trontargets, there are additional diÆ
ulties that arise whi
h
ompli
ate the extra
tion of ionization amplitudes. Themethod we have devised for addressing these 
ompli
a-tions will be des
ribed as well.The outline of this paper is as follows. The theory ispresented in Se
tion II. We begin with a des
ription ofthe TD-ECS method for 
omputing the s
attered wavefun
tion. We then des
ribe how this wave fun
tion is usedin 
al
ulating amplitudes for ex
itation and ionization.The formal results are then applied in the 
ase of the S-wave model. In Se
tion III we present numeri
al resultsfor ex
itation as well as total and di�erential ionization
ross se
tions. In Se
tion IV we summarize and dis
ussour �ndings. II. THEORYOur treatment of this problem involves two main parts:the 
omputation of the three-ele
tron s
attering wavefun
tion and the extra
tion of physi
al 
ross se
tions.

A. Cal
ulation of the s
attered wave fun
tionThe starting point for all ECS appli
ations is an equa-tion that determines the purely outgoing part of the fullwave fun
tion. To that end, we begin by partitioning thefull wave fun
tion 	+ into two parts:	+ = �0 +	SC; (1)where the unperturbed fun
tion �0 spe
i�es the initial
onditions and the s
attered wave 	SC 
ontains onlyoutgoing waves. Substituting Eq. (1) into the time-independent S
hr�odinger equation gives a driven equa-tion for the s
attered wave:(E �H)	SC = (H �E)�0: (2)Eq. (2) must be solved with purely outgoing boundary
onditions; the s
attered wave 	SC 
arries informationabout all the dynami
al pro
esses of interest.The ECS method allows one to determine the s
at-tered wave on a �nite volume without having to detailits expli
it asymptoti
 form. The method uses an ana-lyti
 transformation where the ele
tron 
oordinates arerotated into the 
omplex plane beyond some point R0.This is a

omplished by repla
ing ea
h radial ele
tron
oordinate r with a s
aled 
oordinate R(r), de�ned byR(r) = � r r < R0R0 + (r �R0)ei� r � R0: (3)Purely outgoing fun
tions de
ay on the 
omplex portionof the 
oordinate R(r). However, the fun
tion at dis-tan
es less than R0 are una�e
ted by the s
aling. Thus,by requiring that solutions vanish at the origin and someappropriately large distan
e along the 
omplex 
ontour,we obtain a solution that is purely outgoing, and is ef-fe
tively equal to the physi
al wave fun
tion on the realportion of the grid. The \e�e
tively" quali�er re
e
tsthe fa
t that the intera
tion potentials on the r.h.s. ofEq. (2) must be trun
ated on the 
omplex portions ofthe 
ontour [1, 17℄. As R0 is in
reased, the solution ap-proa
hes the exa
t physi
al s
attered wave on the realportion of the grid. We note here that while the s
at-tered wave is 
ontinuous along the 
ontour de�ned byR(r), its derivative is dis
ontinuous at R0.In most of the previous appli
ations of ECS, Eq. (2)was solved by expanding the wave fun
tion on a gridusing an appropriate dis
retization method (�nite di�er-en
e or �nite elements) and solving the resulting linearequations to obtain the s
attered wave solution. How-ever, due to the poor s
aling with respe
t of the numberof parti
les, even in the 
ase of three ele
trons, the sizeof the linear systems be
ome very large and impra
ti
alto solve. Our strategy for 
ir
umventing this diÆ
ulty isto re
ast the problem with an equivalent time-dependentformulation [11℄ that does not require us to solve largelinear systems and that s
ales favorably with in
reasingparti
le number.



3In the reformulated method, the s
attered wave fun
-tion is 
omputed as the Fourier transform of a time-dependent wavepa
ket,	SC = �i Z 10 eiEt�(t) dt; (4)with �(t) = e�iHt�(0): (5)The initial \wavepa
ket" is simply given by�(0) =�H(R(r1); R(r2) � � � )�E��0�R(r1); R(r2) � � � �:(6)This formulation follows from noting that the solution ofEq. (2) whi
h we seek 
an be formally written as	SC = G+�(0); (7)with G+ being the full Green's fun
tionG+ =�!0 (E �H + i�)�1=�!0 1i Z 10 ei(E+i�)te�iHt: (8)Be
ause we are using ECS, the wavepa
ket �(t) will limitto zero for large frig as t!1, so the +i� in Eq. (8) 
anbe dropped. Eq. (4) is thus formally equivalent to the so-lution of Eq. (2). Instead of solving large linear systems,it requires that we propagate �(0) on the ECS 
ontourin multiple dimensions for times suÆ
iently large to 
on-verge the Fourier transform that provides the numeri
alrepresentation of 	SC.We seek a method that s
ales well with parti
le num-ber and therefore one that does not involve solutions oflinear equations representing multiple dimensions at ea
htime step. To that end, we employ a split operator ap-proximation [18℄ for the time propagation operator. TheHamiltonian for d parti
les is �rst separated into one-two-body terms:H = dXi=1 h1(ri) + dXi>j=1 v2(ri; rj)� H1 + V2; (9)and the propagator is then approximated ase�iH�t � exp ��i��t2 �V2�� " dYi=1 e�ih1(ri)�t# exp ��i��t2 �V2� : (10)To approximate the one-body Hamiltonian terms, we usea se
ond-order Crank-Ni
olson propagator,e�ih1�t �(1 + ih1�t2 � h21�t212 )�1� (1� ih1�t2 � h21�t212 ): (11)

The s
aling properties of this propagator depend onthe representations of the operators, whi
h we have yetto spe
ify. Earlier implementations of ECS used �nitedi�eren
e methods, but in the present work we employ,for ea
h radial ele
tron 
oordinate, the 
ombined �niteelement-dis
rete variable representation (FEM-DVR) in-trodu
ed by Res
igno and M
Curdy [14℄. The DVR
ombines a high-order polynomial treatment of the ki-neti
 energy operator with the advantage of a diagonalrepresentation of any lo
al potential operator. For theDVR representation, we use a basis of so-
alled \Lo-batto shape fun
tions" [19℄, whi
h are Lagrange inter-polating polynomials with mesh points derived from aGauss-Lobatto quadrature. Gauss-Lobatto quadrature issimilar to the more familiar Gauss-Legendre quadrature,with the di�eren
e that in Gauss-Lobatto quadrature twoof the points are 
onstrained to 
oin
ide with the spe
i-�ed end-points. Sin
e Gauss-Lobatto quadrature expli
-itly in
ludes the end-points as quadrature points, it ispossible to 
ombine this parti
ular variety of DVR withthe �nite-element method, as outlined in ref. [14℄. More-over, by 
hoosing one of the element boundaries to 
oin-
ide with the point R0 where the real and 
omplex partsof the ECS 
ontour join, the derivative dis
ontinuity inthe wave fun
tion at R0 is handled exa
tly.With the FEM-DVR, matrix element 
omputation isgreatly simpli�ed 
ompared with other basis set methods.When the integrals are approximated using the underly-ing Gauss quadrature, the lo
al potential operators havea diagonal representation. Matrix elements of derivativeoperators, su
h as the kineti
 energy, are not diagonal,but are given by simple analyti
 formulas. With FEM-DVR, the kineti
 energy operator has a blo
ked matrixstru
ture, where ea
h blo
k representing a parti
ular �-nite element is full, and the various blo
ks are 
onne
tedby the end-point DVR fun
tions that join adja
ent ele-ments [14℄. Thus the overall kineti
 energy matrix, whilenot diagonal, 
an be very sparse, depending on the num-ber of elements and order of quadrature used in ea
helement.The eÆ
ien
y of the time-dependent formulation inmore than two dimensions be
omes readily apparent withan FEM-DVR representation. Sin
e the matrix elementsof lo
al fun
tions are diagonal and the one body Hamil-tonian terms separate, the number of operations neededto evaluate the exponential propagators in Eq. (10) 
anbe easily estimated. Assume we have n grid points inea
h of d dimensions. For one time step, ea
h opera-tion on the wave pa
ket with exp(�iV2�t=2) requiresone multipli
ation per grid point, or of order nd opera-tions. The operator exp(�ih1�t) in ea
h dimension 
anbe represented by an n�n matrix (Eq. (11)) that need be
omputed only on
e. Ea
h operation with exp(�ih1�t)involves a matrix multiply for one of the dimensions thathas to be done for ea
h point in the other dimensions,and thus requires of the order n2�nd�1 = nd+1 elemen-tary operations. The entire propagator thus requires oforder 2nd + dnd+1 � dnd+1 operations per time step. If



4we attempted to represent the time-independent drivenS
hr�odinger equation on the nd�nd grid, we would haveto solve a sparse set of linear equations for 	SC. If itera-tive methods were used, whi
h o�er the best s
aling withn, the e�ort required would s
ale no better than n2d. Thes
aling advantage of the time-dependent approa
h imple-mented here is that of nd+1 versus n2d. For d = 3 andn = 150, whi
h is typi
ally required in these 
al
ulations,that advantage is 5�108 vs. 1013 operations to perform.B. Extra
ting 
ross se
tionsThe formal and 
omputational advantage of ECS isthat it does not make referen
e to any spe
i�
 asymptoti
boundary 
onditions other than the requirement that thes
attered wave be purely outgoing. On
e the s
atteredwave has been 
al
ulated, we must de
ide how to extra
tthe detailed dynami
al information it des
ribes. Onewould not normally view this as a major issue, sin
e inmost standard methods, the asymptoti
 boundary 
ondi-tions that de�ne the dynami
al quantities of interest areused in the generation of the wave fun
tion. But in theECS method, what is obtained is a numeri
al representa-tion of a wave fun
tion that 
ontains information aboutall pro
esses that are allowed at a spe
i�
 total energy, asdetailed spe
i�
ation of s
attering boundary 
onditionsis avoided by design.A simple and straight-forward way to obtain the ion-ization 
ross se
tion is to 
ompute the quantum me
hani-
al 
ux through a surfa
e that lies inside the region wherethe 
oordinates are real. While this method was used inthe �rst su

essful appli
ations of ECS to e-H ioniza-tion [9, 20℄, there are intrinsi
 problems with this ap-proa
h. The method requires fairly large grids sin
e thenumeri
ally 
omputed quantities must be extrapolatedto in�nite grid size, where the 
ux 
an be related to thedi�erential 
ross se
tions for ionization. More serious isthe problem that the grids must be large enough to al-low the physi
al region inhabited only by the ionizationportion of the s
attered wave to be distinguishable fromthe parts that des
ribe dis
rete two-body 
hannels. Therequirement that the ionization wave be \un
overed" be-fore the asymptoti
 
ux is 
al
ulated 
an require gridsthat extend well beyond the range where the intera
tionpotentials are appre
iable.The most pra
ti
al, and e
onomi
al, approa
h to 
al-
ulating both ex
itation and breakup 
ross se
tions is toformulate the problem in terms of integral expressionsfor the underlying s
attering amplitudes [15℄. For dis-
rete ex
itations in the present 
ase of a three-ele
tronradial problem, we 
an begin with the formal expressionfi!n = 2pkn 
�n(r1; r2) sin(knr3) jE �H1j	+� ; (12)where �n is a dis
rete target state and H1 is the unper-turbed Hamiltonian 
orresponding to the in
ident 
han-

nel arrangement, so that:(H1 �E)j�n(r1; r2) sin(knr3)i = 0: (13)It is to be understood that the matrix element in Eq. (12),and in all the expressions that follow, is 
arried out overa �nite volume de�ned by some hyperradius where theele
tron 
oordinates are all real. We 
an then use Green'stheorem, along with Eq. (13), to express the amplitudeas a surfa
e integral:fi!n = 1pkn RS [�n(r1; r2) sin(knr3)r	+(r1; r2; r3)�	+(r1; r2; r3)r�n(r1; r2) sin(knr3)℄ � dŜ= 1pkn RS [�n(r1; r2) sin(knr3)r	SC(r1; r2; r3)�	SC(r1; r2; r3)r�n(r1; r2) sin(knr3)℄ � dŜ(14)where the repla
ement of 	+ by 	SC in the surfa
e in-tegral follows from an examination of the integrand ofEq. (14) on the surfa
e.The derivation of a workable formula for the ionizationamplitude requires some 
are. We prefa
e this dis
ussionby noting that all of the matrix elements 
onsidered hereare presumed to be evaluated on a large but �nite volume,so we will employ the standard rearrangement theory forshort-ranged intera
tions and not address any of the dif-�
ulties posed by the formal theory of ionization. The
onne
tion with the formal theory, and in parti
ular thequestion of the proper de�nition of the overall phase ofthe ionization amplitude, whi
h does not a�e
t any phys-i
al 
ross se
tion, has been dis
ussed at length elsewhereand will not be repeated here [16, 21℄.We have previously pointed out that, for a one-ele
trontarget, the following expression for the breakup ampli-tude [15℄,f(k1; k2) = 2 hsin(k1r1) sin(k2r2) jE � T j	SCi ; (15)where T is the total kineti
 energy operator, while for-mally 
orre
t, does not prove to be useful in an a
tualnumeri
al 
al
ulation on a �nite volume. This failure
an be tra
ed to the 
ontribution of dis
rete two-body
hannels in 	SC whi
h give rise to overlap terms thatproperly 
onverge to Dira
 Æ fun
tions only for in�nitevolumes. This 
ontamination of the ionization amplitudefrom bound states renders Eq. (15) useless on a �nitevolume. The solution to this problem is to employ a for-mally equivalent expression with distorted waves in the�nal state:f(k1; k2) = 2 h'k1'k2 jE � T � V1j	SCi ; (16)where V1 is the distorted wave potential 
orrespondingto the �nal state. In the e�-H 
ase, for example, we
hoose the distorted waves to be Coulomb fun
tions withZ = 1 [16℄. Sin
e the Coulomb fun
tions are eigenfun
-tions of the same Hamiltonian as the hydrogeni
 boundstates, orthogonality is realized on the �nite volume and



5the spurious 
ontributions to the breakup amplitude areeliminated.The natural extension of Eq. (16) to the present he-lium 
ase, for single ionization leaving the ion in the n-thex
ited state, would bef(k1; k2) = 2 h'n'k1'k2 jE � T � V1j	SCi : (17)But now the use of distorted waves alone 
annot 
om-pletely eliminate the 
ontamination of the ionizationamplitude by dis
rete ex
itation 
hannels, sin
e thereis generally no orthogonality relationship between thesingle-parti
le distorted waves and the exa
t two-parti
lebound states of the target. Nevertheless, we 
an stilla
hieve mu
h by 
hoosing the distorted wave potentialjudi
iously. The ex
ited states of the model S-wave he-lium atom, both singlet and triplet, are reasonably welldes
ribed by single-
on�guration wave fun
tions of theform 1;3j'1s'nsj, where '1s is the 1s orbital of He+.The 'ns orbitals for the 
orresponding singlet and tripletstates are of 
ourse not identi
al, but they are reasonablysimilar. With these 
onsiderations in mind, we 
hoosethe distorted waves to be solutions of the triplet stati
-ex
hange equation,(T � 2r + J1s �K1s � k2=2)'k = 0; (18)where J1s and K1s are the usual Coulomb and ex
hangeoperators 
onstru
ted with the He+ 1s orbital. Note thatthe He+ 1s orbital is an eigenfun
tion of this equation, asare the triplet 'ns orbitals. This 
hoi
e therefore guar-antees approximate orthogonality between the distortedwaves and all the ex
ited helium target states. It doesnot, however, eliminate 
ontamination of the breakupamplitude by the ground-state 
hannel, sin
e the neu-tral helium ground-state 1s orbital is very di�erent fromthe He+ 1s orbital.To address the problem of 
ontamination by the elasti

hannel, and to further improve on the pres
ription for
omputing a stable ionization amplitude, we employ thete
hnique of \asymptoti
 subtra
tion" whi
h we intro-du
ed in our earlier study of breakup with short-rangedpotentials [11℄. The idea is to try to remove the asymp-toti
 
ontribution of the dis
rete two-body 
hannels tothe s
attered wave before 
omputing the ionization am-plitude. Asymptoti
ally, the s
attered wave has the form	SC = 	ionSC +Xn �fi!npkn ��n(r1; r2)eiknr3 : (19)So by subtra
ting the sum that appears in Eq. (19) from	SC we 
an, in prin
iple, isolate, asymptoti
ally, the pureionization portion of the s
attered wave. The ex
itationamplitudes fi!n 
an be 
al
ulated using Eq. (12) or (14).There are of 
ourse an in�nite number of dis
rete two-body 
hannels, but on a �nite volume only a �nite num-ber of bound states 
an be supported.The ionization amplitude is thus evaluated by startingwith the expressionf(k1; k2) = 2 
'n'k1'k2 jE � T � V1j	ionSC� ; (20)

and using Green's theorem to 
onvert it to a surfa
e in-tegralf(k1; k2) = ZS �'n(r1)'k1 (r2)'k2(r3)r	ionSC(r1; r2; r3)�	ionSC(r1; r2; r3)r'n(r1)'k1(r2)'k2(r3)� � n̂ dS: (21)The use of the surfa
e integral form of the amplitude,whi
h only depends of the asymptoti
 part of the s
at-tered wave, is now essential, sin
e asymptoti
 subtra
tion
hanges the interior part of the s
attered wave and makesthe volume integral representation of the amplitude in-valid. We have found that asymptoti
 subtra
tion andthe 
orre
t 
hoi
e of distorted waves are both essential in
omputing a

urate ionization 
ross se
tions.C. S-Wave model of heliumAs we have mentioned, the S-wave model arises fromretaining only the �rst, l = 0, term in the angular mo-mentum expansion of the ele
tron repulsion potentials.The full Hamiltonian for the e�-He system in the S-wavemodel is H(r1; r2; r3) =T1 + T2 + T3 � 2r1 � 2r2 � 2r3+ 1r>(1; 2) + 1r>(1; 3) + 1r>(2; 3) ; (22)where r>(1; 2) = max(r1; r2).The helium target bound states �n(r1; r2) are eigen-fun
tions of the 2-ele
tron Hamiltonian,Ht(rr;r2)�n(r1; r2) =�T1 + T2 � 2r1 � 2r2 + 1r>(1; 2)��n(r1; r2)= En�n(r1; r2): (23)The spatial part of these states 
an be either symmetri
or anti-symmetri
 with respe
t to inter
hange of the twoele
tron 
oordinates, 
orresponding to singlet, sn = 0, ortriplet, sn = 1, spin-
oupling of the target ele
trons.The initial 
onditions for determining 	SC are 
on-tained in the spe
i�
ation of �0: sin
e the full Hamil-tonian is totally symmetri
, the permutational proper-ties of 	SC are set by the initial wave fun
tion. To 
on-stru
t a physi
al three-ele
tron initial state, labeled bytarget state n and spin sn and total spin (S = 1=2 orS = 3=2), we 
an apply the antisymmetrization operatorto the produ
t of a three-ele
tron spin state, jS; sni, andan unperturbed spatial fun
tion,�n;S;sn0 (r1; r2; r3) = A ��n(r1; r2) sin(knr3)pkn jS; sni� :(24)



6For example, the three ele
tron doublet spin eigenfun
-tion (S = 1=2) for a triplet target state (sn = 1) isj12 ; 1i = 1p6(2��� � ���� ���); (25)where we have 
hosen the proje
tion mS = 12 . For thefully antisymmetri
 three-ele
tron state, the spatial andspin portions of the wave fun
tion generally do not fa
tor.Having de�ned the unperturbed initial state withEq. (24), we must 
onstru
t a solution of the drivenS
hr�odinger for the 
orresponding s
attered wave,	n;S;snSC : (E �H)	n;S;snSC = (H �E)�n;S;sn0 (26)In pra
ti
e, it is only ne
essary to solve this equationfor a single arrangement of the ele
tron 
oordinates sin
eany other arrangement 
an be obtained by an appropri-ate permutation of ele
tron 
oordinate labels, ie., we 
anpropagate an unsymmetri
 initial state and then 
on-stru
t the desired physi
al state by 
ombining the solu-tion ve
tors with di�erent permutations of the 
oordinateindi
es. The single arrangement we 
ompute is(E �H) i(r1; r2; r3) = (H �E)�ni(r1; r2) sin(kir3)pki :(27)The amplitudes for dis
rete ex
itation, FS;sf ;sii!f , 
anthen be 
onstru
ted from the quantities:f (1)fi = 2*�nf (r1; r2) sin(kf r3)pkf ����E �H1230 ���� i(r1; r2; r3)+f (2)fi = 2*�nf (r2; r3) sin(kf r1)pkf ����E �H2310 ���� i(r1; r2; r3)+f (3)fi = 2*�nf (r3; r1) sin(kf r2)pkf ����E �H3120 ���� i(r1; r2; r3)+ ;(28)whereH ijk0 = Ht(ri; rj)+Tk. Using Green's identities, asdis
ussed above, these matrix elements 
an be 
onvertedto surfa
e integrals. For example,f (1)fi = 1pkf ZS ��nf (r1; r2) sin(kfr3)r i(r1; r2; r3)�  i(r1; r2; r3)r�nf (r1; r2) sin(kf r3)� � n̂ dS:(29)These arrangement amplitudes are not entirely indepen-dent. In fa
t, f (2)fi = �i�ff (3)fi , where �n = (1 � 2sn)

is the parity of target state n. The arrangement am-plitudes are 
ombined to obtain the physi
al amplitudesFS;sf ;sii!f . Table I gives expli
it formulas for the variousphysi
al amplitudes in terms of the arrangement ampli-tudes, based on the initial and �nal spin states of thethree ele
trons. The physi
al 
ross se
tions for inelasti
s
attering are 
omputed using�fi = 2S + 12(2si + 1) �4�k2i � ���FS;sf ;sii!f ���2 : (30)jS; sii jS; sf i FS;sf ;sii!f�� 12 ; 0� �� 12 ; 0� 12 h2f (1)fi � f (2)fi � f (3)fi i�� 12 ; 0� �� 12 ; 1� p32 hf (3)fi � f (2)fi i�� 12 ; 1� �� 12 ; 0� p32 hf (2)fi � f (3)fi i�� 12 ; 1� �� 12 ; 1� 12 h2f (1)fi � f (2)fi � f (3)fi i�� 32 ; 1� �� 32 ; 1� f (1)fi + f (2)fi + f (3)fiTABLE I: Expressions for s
attering and ionization ampli-tudes in terms of individual arrangement amplitudes.For the single ionization amplitudes, similar 
onsider-ations apply. Following the dis
ussion of Se
. II B, webegin by using asymptoti
 proje
tion to isolate the ion-ization portion of the s
attered wave for a single arrange-ment: ioni (r1; r2; r3) = i(r1; r2; r3)�Xn 1pkn �f (1)ni �n(r1; r2)eiknr3+ f (2)ni �n(r2; r3)eiknr1+ f (3)ni �n(r3; r1)eiknr2� : (31)Note that the s
attered wave 
orresponding to a sin-gle initial arrangement has asymptoti
 two-body 
hannel
omponents in all arrangements, ea
h of whi
h must beremoved in 
omputing  ioni .For the single ionization amplitudes, the �nal statesare assembled from produ
ts of a He+ orbital 'n and two
ontinuum distorted waves 'k1 and 'k2 . As in the 
aseof ex
itation, we 
an de�ne di�erent arrangement ampli-tudes from whi
h the physi
al ionization amplitudes 
anbe assembled:



7f (1)fi (k1; k2) = 2 
'n(r1)'k1(r2)'k2 (r3) jE �H0j ioni (r1; r2; r3)�f (2)fi (k1; k2) = 2 
'n(r2)'k1(r3)'k2 (r1) jE �H0j ioni (r1; r2; r3)�f (3)fi (k1; k2) = 2 
'n(r3)'k1(r1)'k2 (r2) jE �H0j ioni (r1; r2; r3)� : (32)
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itation 
ross se
tions from the 1 1S, ground state.Filled symbols: singlet �nal states. Open symbols: triplet�nal states. Symbols with dark lines: Current ECS results.Light symbols: CCC results from [13℄We must emphasize again that these ionization ampli-tudes, written in Eq. (32) as volume integrals for nota-tional simpli
ity, must be evaluated as surfa
e integrals.Again, these amplitudes are not 
ompletely independent,but related through the following symmetries,f (1)fi (k1; k2) = �if (2)fi (k2; k1)f (3)fi (k1; k2) = �if (3)fi (k2; k1): (33)The \physi
al" ionization amplitudes FS;sf ;sii!f are again
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Total Energy (eV)FIG. 2: As in Fig. 1, for the 2 3S, ex
ited state.given in terms of the arrangement amplitudes in Eq. (32)by the same formulas shown in Table I.To 
ompute the 
ross se
tions for unpolarized in
identele
trons, we must sum the 
ontributions from all allowedintermediate spin 
ouplings. For overall doublet 
oupling(S = 1=2), the single di�erential 
ross se
tions are givenbyd�S=1=2d� = 4k1k2E0 1(2si + 1)� ���F 1=2;sf=0;sifi (k1; k2)���2+ ���F 1=2;sf=1;sifi (k1; k2)���2 �;(34)
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Total Energy (eV)FIG. 3: As in Fig. 1, for the 21S ex
ited state.while for the high-spin 
ase (S = 3=2), the 
ross se
tionisd�S=3=2d� = 4k1k2E0 �23�����F 3=2;sf=1;si=1fi (k1; k2)���2� :(35)The total ionization 
ross se
tion for a given total spinis 
omputed by integrating the SDCS:�S = Z E0 d�Sd� d�: (36)III. RESULTSThe 
omputations were all 
arried out using an FEM-DVR representation of the wave fun
tions for a singleinitial arrangement on a three-dimensional grid. Forea
h radial dimension, the DVR was based on 15th or-der Gauss-Lobatto quadrature in ea
h of 11 �nite ele-ments, 9 real and 2 
omplex, for a total of 153 basisfun
tions. The 
omplex turning point, R0, was lo
ated
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FIG. 4: Comparison of SDCS for ground-state helium atE = 3 eV 
omputed with and without the use of distortedwaves and/or asymptoti
 subtra
tion. Light solid 
urve:SDCS (divided by 10) obtained with Coulomb fun
tions andno asymptoti
 subtra
tion. Dashed 
urve: SDCS obtainedwith Coulomb fun
tions and asymptoti
 subtra
tion. Darksolid 
urve: SDCS obtained with distorted waves and asymp-toti
 subtra
tion.at 101 bohr. The full three-dimensional grid thus 
on-tained 1533=3,581,580 points. We have already notedthat the DVR gives a diagonal representation of all lo
aloperators. In this 
ontext, we should point out that ana

urate DVR representation of the two-ele
tron repul-sion operators that appear in Eqs. (22) and (23) requiressome 
are. These details are fully des
ribed in ref. [11℄.The time propagation was 
arried out using the split op-erator and Crank-Ni
olson s
hemes previously des
ribedin se
tion II A. The wave fun
tion was evolved in timeto Tmax = 400 a:u with time steps of �t = 0:1 a:u.The amplitudes for ex
itation and ionization were allassembled from permutations of the appropriate single-arrangement amplitudes, based on �nal and initial sym-metries, as indi
ated in Table I. These arrangementamplitudes were all evaluated using the surfa
e integralforms of the amplitude expressions, Eqs. (28, 32). Theedges of the surfa
e were lo
ated just inside R0 at 100bohr.We have 
al
ulated ex
itation and ionization 
rossse
tions for the S-wave model from both ground- andex
ited-state, 2 3S and 2 1S, target atoms. The two-ele
tron target states were always obtained by diagonal-izing the target Hamiltonian given in Eq. (23) using thereal portion of the 2D FEM-DVR basis.Figures 1, 2, and 3 show 
ross se
tions starting fromHe 1 1S, 2 3S and 2 1S, respe
tively, for ex
itation tostates with prin
iple quantum number up to n = 3. Wehave also plotted the results of 
onvergent 
lose 
oupling(CCC) 
al
ulations [13℄ in those �gures for 
omparison.In all 
ases, the agreement between the two methods isgood. This 
omparison also indi
ates that, for ex
itation,the frozen-
ore model, whi
h is used in the CCC 
al
ula-tions, and the full model with two a
tive ele
trons used
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Total Energy (eV)FIG. 5: Total ionization 
ross se
tions from di�erent initialstates.here give very similar results.Di�erential single ionization 
ross se
tions were 
om-puted from the ionization amplitude expression given inthe previous se
tion. The SDCS were then numeri
allyintegrated over the full range of eje
ted ele
tron energyto produ
e total ionization 
ross se
tions.As outlined above, the ionization amplitudes were 
om-puted using triplet stati
-ex
hange distorted waves forthe eje
ted free ele
trons along with s
attered wavesin whi
h the ionization 
omponent was isolated usingasymptoti
 subtra
tion. Nine two-body 
hannels, 
orre-sponding to target states with prin
ipal quantum numberup to n = 5, were used in the asymptoti
 subtra
tion.The use of properly de�ned distorted waves, as well asasymptoti
 subtra
tion, are both 
riti
ally important inobtaining a

urate ionization 
ross se
tions. This point isillustrated in Fig. 4, where we show the SDCS for ground-state ionization at E = 3 eV 
omputed three di�erentways, �rst with Coulomb fun
tions and no asymptoti
subtra
tion, then with Coulomb fun
tions and asymp-toti
 subtra
tion and �nally with distorted waves andasymptoti
 subtra
tion.
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FIG. 6: Examples of SDCS �tting at 2:0 eV (left) and 30:0 eV(right) above the �rst IP starting in the 1 1S ground state.Dark 
urve: quadrati
 �t of SDCS. Light 
urve: 
omputedSDCS.The total ionization 
ross se
tions from the di�erentinitial states are all plotted in Fig. 5, along with thefrozen-
ore CCC results [13℄. On
e again, we �nd verygood agreement with the CCC results. There is a slightdis
repan
y in the 
ase of ionization starting in the 2 1Sstate, where the present total 
ross se
tions peak atslightly smaller values than the CCC results.The single di�erential 
ross se
tions o�er the most de-tailed information about breakup in the S-wave modeland are the most diÆ
ult quantities to a

urately 
al
u-late. Even with asymptoti
 subtra
tion and the properly
hosen distorted waves there are small os
illations in the
ross se
tions, whi
h arise from in
omplete eliminationof ex
ited singlet two-body states, whi
h are not 
om-pletely orthogonal to the distorted wave. Fig. 6 showsthe SDCS from the ground-state at total energies of 2and 30 eV, to show the typi
al behavior at low and highenergies. We found that the SDCS in all 
ases 
ould bewell �t with a quadrati
 fun
tion whose parameters areuniquely determined by a least-squares �t that gives thesame integrated 
ross se
tions as the unsmoothed data.The SDCS values presented in Figs. 7-10 are all obtained



10from the �tted quadrati
 
urves.Interestingly, the SDCS for the high spin, S = 3=2,
ase, shown in Fig. 9, required no smoothing at all. Thes
attered waves whi
h determine these 
ross se
tions, bysymmetry, 
an only 
ontain 
ontributions from triplettwo-body 
hannels. The triplet distorted waves we em-ploy remove these 
ontributions e�e
tively exa
tly. Weveri�ed that for these 
ases, identi
al results are obtainedwithout asymptoti
 subtra
tion. We note that the high-spin SDCSs are zero at equal-energy sharing, whi
h isalso required by symmetry.Di�eren
es between the present S-wave results and thefrozen-
ore CCC treatment be
ome more apparent whenwe 
ompare SDCS values. In the CCC study, SDCSresults are only reported for equal-energy sharing, forwhi
h 
ase CCC is purported to provide 
onvergent re-sults [13, 22℄. In Fig.11, the SDCS, at equal-energy shar-ing, are plotted as a fun
tion of total energy. Sin
e Plot-tke et al. de�ne the total 
ross se
tion as the integralof the SDCS from zero to E=2, we have multiplied ourresults by two for the 
omparison. Also, the CCC resultswere published as separate singlet and triplet 
ontribu-tions, not as their sum. However, the triplet 
ontributionto the SDCS at equal energy sharing should, formally, be3 times the singlet 
ontribution. Thus to 
ompare withour results, we have multiplied the CCC singlet 
ontri-butions by 4, and the triplet 
ontributions by 4=3. Whilethe present results and the CCC values are in good agree-ment above 10 eV, the CCC SDCS are noti
eably smallerat lower energies. IV. DISCUSSIONThis study represents a �rst step in applying the ECSformalism to treat ele
tron 
ollisions with a target thathas two a
tive ele
trons. The S-wave model, whi
h sim-pli�es the full e�-He problem by treating only states withzero angular momentum, is nevertheless a true Coulombfour-body problem and, when treated in full dimension-ality, displays mu
h of the 
omplexity of the full problem.By employing a time-dependent formulation of exterior
omplex s
aling, we 
an still obtain a numeri
al repre-

sentation of the time-independent s
attered wave whileavoiding the problem of solving large systems of 
omplexlinear equations. There is therefore every reason to be-lieve that the same numeri
al te
hniques we have used inthis study 
ould be su

essfully applied to the full e�-Heproblem.The amplitudes for dis
rete ex
itation are easily 
om-puted from the numeri
ally obtained s
attered waves andare found to give 
ross se
tions that agree well with pre-vious CCC studies that employed a frozen-
ore model.The 
al
ulation of a

urate ionization amplitudes, on theother hand, poses signi�
ant formal and 
omputationaldiÆ
ulties that are not en
ountered when dealing withsingle a
tive ele
tron targets. Our approa
h to this prob-lem has been to 
ombine \asymptoti
 subtra
tion" alongwith a judi
ious 
hoi
e of 
ontinuum distorted waves tominimize the 
ontamination of the ionization amplitudesby dis
rete two-body 
hannels. This strategy was foundto be reasonably su

essful in the present 
ase and shouldalso 
arry over to the full e-He problem. While the total
ross se
tions for ionization we 
omputed were found toagree well with the frozen-
ore CCC results, there werenoti
eable di�eren
es in the single di�erential 
ross se
-tions, parti
ularly at low energies. It is not 
lear whetherthese di�eren
es 
an be attributed to de�
ien
ies in thefrozen-
ore model or to 
onvergen
e problems in the CCC
al
ulations. A
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FIG. 7: SDCS for ionization from the 1 1S ground state for various energies above the �rst IP. Left panel, top to bottom: 5.0,4.0, 3.0, 2.0 and 1.0 eV. Right panel, y-axis inter
ept from top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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FIG. 8: SDCS for ionization from the 2 3S ground state for various energies above the �rst IP, with S = 1=2. Left panel, topto bottom: 2.0, 1.0, 3.0, 4.0 and 5.0 eV. Right panel, top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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FIG. 9: SDCS for ionization from the 2 3S ground state for various energies above the �rst IP, with S = 3=2. Left panel, top tobottom: 5.0, 4.0, 3.0, 2.0 and 1.0 eV. Right panel, y-axis inter
ept from top to bottom: 10.0, 15.0, 5.0, 20.0, 25.0 and 30.0 eV
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FIG. 10: SDCS for ionization from the 2 1S ground state for various energies above the �rst IP. Left panel, y-axis inter
eptfrom top to bottom: 2.0, 1.0, 3.0, 4.0 and 5.0 eV. Right panel, top to bottom: 5.0, 10.0, 15.0, 20.0, 25.0 and 30.0 eV
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